In the near future new supercomputers, not doctors, will analyze data and suggest the right therapy.

According to the first clinical trial results of a new Artificial Intelligence drug, data shows that cancer growth is slowing down considerably.

(Newswire.net -- December 28, 2017) --

Scientists say that we are now in an explosive phase of merging technological advances and medicine. A new drug developed by researchers from US biotechnology company Berg uses Artificial Intelligence to fight cancer.

The problem with conventional anti-cancer drugs is that they attack healthy cells as well as fighting cancer. The aim for decades has been to develop a cure that targets and destroys only cancer cells giving patients a better chance of surviving this deadly disease.

Combined with high end technology, scientists have developed a ‘smart’ cure that can detect and attack only cancer cells. Using Artificial Intelligence, they created BPM31510, an anti-cancer drug that could become a milestone in modern medicine.

The data presented at the conference of the American Society for Clinical Oncology, shows that some tumors treated with BPM31510 have decreased by about a quarter of the original size. The new compound will now be subjected to more advanced tests.

Recognizing every difference between carcinogens and healthy cells is still impossible for even the most brilliant minds. To combat this issue the US biotech company Berg took over the storage of all known data so that their scientists can now process it in new supercomputers.

The goal, of course, is to allow artificial intelligence to find ways to reverse the cancerous cell back to normal. This led to their first drug, called BPM31510, which is trying to reverse the Warburg effect - a phenomenon in which carcinogenic cells change their method of sustenance.

The trial test of a new drug was made only to measure potential toxicity danger to a human organism. But in one of the trial patients the tumor had decreased by 25%. One of the founders of Berg, Dr. Niven Narain, said it was still early for widespread use of the drug, but confirmed that cancer had been responding, and that the future was in artificial intelligence drugs that can detect and destroy different cancer cells while dodging the healthy ones.

"I think we're at a very explosive stage, this fusion of biology with technology in helping us understand the basis of this disease more fundamentally," Dr Narain told BBC. "It's going to allow us to make better decisions on how we develop drugs, to whom we give these drugs to so that we're able to increase the survival outcome," he added.

Results obtained from the 85 patients included in the trials are inserted back into the supercomputer in order to further improve the therapy. The company believes that the most demanding cancer cells will prove to be the most useful, so the next round of testing will be on cancer patients with pancreatic cancer.

Dr. Alan Vorzli, from the UK Carcinogen Research Center, says that, at the very beginning, we are taking advantage of the huge advances in computer learning to understand cancer.

"We still don't fully understand how cancer cells get the energy they need to grow or how this differs from normal cells," said Dr Vorzli adding that "we need to keep finding new ways to find innovative treatments for patients."
According to Dr Vorzli, in the near future new supercomputers, not doctors, will analyze the data and suggest the appropriate therapy.